24 research outputs found

    Iterative forcing and hyperimmunity in reverse mathematics

    Full text link
    The separation between two theorems in reverse mathematics is usually done by constructing a Turing ideal satisfying a theorem P and avoiding the solutions to a fixed instance of a theorem Q. Lerman, Solomon and Towsner introduced a forcing technique for iterating a computable non-reducibility in order to separate theorems over omega-models. In this paper, we present a modularized version of their framework in terms of preservation of hyperimmunity and show that it is powerful enough to obtain the same separations results as Wang did with his notion of preservation of definitions.Comment: 15 page

    Depth, Highness and DNR Degrees

    Get PDF
    A sequence is Bennett deep [5] if every recursive approximation of the Kolmogorov complexity of its initial segments from above satisfies that the difference between the approximation and the actual value of the Kolmogorov complexity of the initial segments dominates every constant function. We study for different lower bounds r of this difference between approximation and actual value of the initial segment complexity, which properties the corresponding r(n)-deep sets have. We prove that for r(n) = εn, depth coincides with highness on the Turing degrees. For smaller choices of r, i.e., r is any recursive order function, we show that depth implies either highness or diagonally-non-recursiveness (DNR). In particular, for left-r.e. sets, order depth already implies highness. As a corollary, we obtain that weakly-useful sets are either high or DNR. We prove that not all deep sets are high by constructing a low order-deep set. Bennett's depth is defined using prefix-free Kolmogorov complexity. We show that if one replaces prefix-free by plain Kolmogorov complexity in Bennett's depth definition, one obtains a notion which no longer satisfies the slow growth law (which stipulates that no shallow set truth-table computes a deep set); however, under this notion, random sets are not deep (at the unbounded recursive order magnitude). We improve Bennett's result that recursive sets are shallow by proving all K-trivial sets are shallow; our result is close to optimal. For Bennett's depth, the magnitude of compression improvement has to be achieved almost everywhere on the set. Bennett observed that relaxing to infinitely often is meaningless because every recursive set is infinitely often deep. We propose an alternative infinitely often depth notion that doesn't suffer this limitation (called i.o. depth).We show that every hyperimmune degree contains a i.o. deep set of magnitude εn, and construct a π01- class where every member is an i.o. deep set of magnitude εn. We prove that every non-recursive, non-DNR hyperimmune-free set is i.o. deep of constant magnitude, and that every nonrecursive many-one degree contains such a set

    Comparing the degrees of enumerability and the closed Medvedev degrees

    Get PDF
    We compare the degrees of enumerability and the closed Medvedev degrees and find that many situations occur. There are nonzero closed degrees that do not bound nonzero degrees of enumerability, there are nonzero degrees of enumerability that do not bound nonzero closed degrees, and there are degrees that are nontrivially both degrees of enumerability and closed degrees. We also show that the compact degrees of enumerability exactly correspond to the cototal enumeration degrees
    corecore